Disease Risk Seen in Disrupted Biological Clock, USC Study Shows

USC scientists report that a novel time-keeping mechanism within liver cells that helps sustain key organ tasks can contribute to diseases when its natural rhythm is disrupted.

This dual function of the nuclear receptor protein HNF4A offers a potential explanation for diseases such as diabetes and cancers. It also helps explain why such maladies are more common for people living with disrupted sleep, including night-shift workers, urban dwellers and international jet-setters.

Circadian rhythms are guided by internal clocks in cells that enable organisms to adapt to night and day cycles. Disruption of this cycle can lead to health problems in people, so scientists study cell behavior to see how the interrupted clock can cause diseases – an important step toward targeted medical treatments.

“Epidemiological studies are consistently revealing more and more connection between modern lifestyles and our internal biological clock, and when those two clash, it can lead to development of diseases such as obesity and breast cancer,” said Steve Kay, director of convergent biosciences and Provost Professor of Neurology, Biomedical Engineering and Biological Sciences at the USC Michelson Center for Convergent Biosciences. “This study goes beyond the epidemiology to explore the mechanisms of circadian disruption as a risk factor for certain diseases.”

The research paper appears in today’s Proceedings of the National Academy of Sciences. It is among the first research papers to come from investigators working in the new USC Michelson Center.

Prev1 of 3Next